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Abstract. This paper investigates the feasibility of estimating large-scale soil moisture
profiles and related land surface variables from 1.4 GHz (L-band) passive microwave
measurements, using variational data assimilation. Our four-dimensional assimilation
algorithm takes into account both model and measurement uncertainties and provides
dynamically consistent interpolation and extrapolation of remote sensing data over space
and time. The land surface hydrologic model which forms the heart of the variational
algorithm was expressly designed for data assimilation purposes. This model captures key
physical processes while remaining computationally efficient. We test our algorithm with a
series of synthetic experiments based on the Southern Great Plains 1997 Hydrology
Experiment. These experiments provide insights about three issues that are crucial to the
design of an operational soil moisture assimilation system. Our first synthetic experiment
shows that soil moisture can be satisfactorily estimated at scales finer than the resolution
of the brightness images. This downscaling experiment indicates that brightness images
with a resolution of tens of kilometers can yield soil moisture profile estimates on a scale
of a few kilometers, provided that micrometeorological, soil texture, and land cover inputs
are available at the finer scale. In our second synthetic experiment we show that adequate
soil moisture estimates can be obtained even if quantitative precipitation data are not
available. Model error terms estimated from radio brightness measurements are able to
account in an aggregate way for the effects of precipitation events. In our third
experiment we show that reductions in estimation performance resulting from a decrease
in the length of the assimilation time interval are offset by a substantial improvement in
computational efficiency.

1. Introduction

Soil moisture plays a major role in the global hydrologic
cycle, principally through its effect on the partitioning of en-
ergy and precipitation at the land surface. As a result, soil
moisture is a key variable for weather and climate prediction,
flood forecasting, and the determination of groundwater re-
charge. It is well known that soil moisture is difficult to mea-
sure over the scales needed for these applications. In situ soil
moisture profiles measured at point locations vary greatly and
are inadequate for characterizing regional variations. Re-
motely sensed radio brightness measurements (e.g., 1.4 GHz
L-band passive microwaves) provide better spatial coverage.
However, they are sensitive only to soil moisture in the top 5
cm of the surface layer, and they do not provide direct infor-
mation about the soil moisture profile.

The limitations of current techniques for measuring soil
moisture can be partially overcome if data assimilation tech-
niques are used to combine radio brightness measurements
with other relevant information, such as micrometeorological
measurements, land cover data, and soil textural maps. These

complementary sources of information can be related with
physically based models that describe the connection between
land surface states and measured radio brightness. Since the
measurements may be noisy and the models are only approx-
imate, the data assimilation procedure must explicitly account
for both measurement and model errors. This prevents the
procedure from relying excessively on either source of infor-
mation.

The models used in this study describe the state of the land
surface in terms of the near-surface soil moisture and soil
temperature and the temperature in the overlying vegetation
canopy. The moisture and temperature states are constrained
by mass and energy balances which are formulated over an
extensive grid of vertical soil columns. A simple radiative trans-
fer model relates the measured radio brightness signal from a
given area to the model states in the associated columns. The
soil and canopy states are adjusted to provide a best fit to the
measured radio brightness, with consideration given to the
possible impact of measurement and model errors. This ap-
proach provides a true four-dimensional soil moisture data
assimilation capability.

Data assimilation is distinguished from more traditional hy-
drologic model calibration primarily by its objectives. In data
assimilation the emphasis is on the estimation of hydrologic
states from measurements. The model is viewed as a tool in
this process, rather than as the primary object of interest. As a
result, model selection should consider a number of factors,
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including computational efficiency and robustness as well as
physical realism.

Given certain assumptions, the assimilation process can be
reduced to the solution of a constrained least squares estima-
tion problem. This problem is difficult because the number of
unknowns can be very large and the constraining model is
highly nonlinear. Many of the existing soil moisture assimila-
tion studies focus on one-dimensional problems [Katul et al.,
1993; Parlange et al., 1993; Entekhabi et al., 1994; Calvet et al.,
1998; Galantowicz et al., 1999; Castelli et al., 1999]. Since in one
dimension the number of nodes is usually very small and the
computational resources are not a limiting factor, these studies
apply optimal assimilation techniques such as the Kalman filter
[Gelb, 1974]. In most cases, these optimal algorithms are able
to quantify the accuracy of their estimates by explicitly com-
puting error bars, or more generally, the estimation error co-
variance matrix, which typically varies over both time and
space.

A second category of soil moisture assimilation studies con-
fronts the problem of estimating horizontal as well as vertical
variations in soil moisture. In order to deal with computational
limitations these studies use simplified estimation algorithms.
Houser et al. [1998] discuss various algorithms (including Nudg-
ing and Statistical Interpolation). However, these methods are
suboptimal because they ignore the spatial and temporal evo-
lution of the estimation error covariance matrices and use
static covariances instead.

Variational data assimilation methods used in meteorologi-
cal and oceanographic applications [Thépaut and Courtier,
1991; Daley, 1991; Bennett, 1992; Courtier et al., 1993;
McLaughlin, 1995] offer the possibility of achieving the optimal
performance of Kalman filters with the computational effi-
ciency of suboptimal methods. This is possible because varia-
tional methods do not explicitly evaluate the large error co-
variance matrices which are propagated by Kalman filters.
Instead, variational algorithms simultaneously process all data
within a given time period (or “assimilation interval”) and
implicitly take dynamic error information into account by
propagating an adjoint variable (section 2). Various computa-
tional enhancements developed in recent years have greatly
improved the practical potential of the variational approach
[Bennett, 1999].

This paper considers the feasibility of applying variational
methods to large-scale land assimilation problems. It also pre-
sents some important results relating to the design and the
implementation of operational assimilation algorithms. We be-
gin in sections 2 and 3 with brief reviews of the assimilation
method and the land model. Details are provided in the cited
references, including Reichle [2000]. In section 4 we describe
several synthetic experiments that we later use to investigate
design issues. Section 5.1 demonstrates that coarse-scale
brightness data are useful for the estimation of soil moisture at
finer scales (downscaling). Section 5.2 shows that reasonable
soil moisture estimates can be obtained from L-band passive
microwave observations, even if accurate quantitative precipi-
tation data are not available. Section 5.3 investigates the length
of the assimilation interval and related initialization issues. In
section 6, we summarize our results and their limitations.

2. Variational Data Assimilation
We begin by recognizing that model predictions and mea-

surements both provide useful information about the actual

state of the soil. The primary task of data assimilation is to
combine these two sources of information in an optimum way.
The models used for data assimilation are typically based on
mass, momentum, or energy balance equations which describe
the temporal and spatial evolution of specified state variables.
In the application of interest here the primary states are soil
moisture, soil temperature, and canopy temperature. These
variables may be approximated by a set of spatially discretized
states defined at the cells of a three-dimensional computa-
tional grid (Figure 1).

If the spatially discretized states are assembled in a time-
dependent NY dimensional vector Y(t) the hydrologic model
can be expressed as

­Y
­t 5 w~Y! 1 v , Y u t50 5 Y0~b! . (1)

We account for model errors by treating the energy and mois-
ture forcing terms in the model as temporally and spatially
correlated random fields. These model errors are assembled in
the NY dimensional vector v. The nonlinear operator w in-
cludes all deterministic forcings such as observed micro-
meteorologic inputs. The initial condition depends on a ran-
dom vector b, which may have a dimension less than NY. The
random variables which appear in (1) are defined in terms of
their first and second-order moments (means and covariances).
In particular, the specified prior (or first guess) mean values v#

Figure 1. Schematic of the model grid with typical length
scales. Soil moisture estimates are obtained on the 5-km scale
of the estimation pixels (fine outline). For this example re-
motely sensed brightness measurements are available on the
10-km scale of the observation pixels (thick outline).
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and b# and prior (or first guess) covariances Cv and Cb sum-
marize the available information about the random errors
prior to assimilating the radio brightness measurements.

The radio brightness measurements to be assimilated by the
estimation algorithm are indirectly related to the moisture and
temperature states in the hydrologic model. It is convenient to
assemble all brightness temperature measurements available
over a specified time period [0, tf] in an NZ dimensional
vector Z . We call this time period the “assimilation interval.”
The kth element (Zk) of Z is the scalar measurement obtained
at time tk [ [0, tf] over an area centered on location xk. With
these definitions we can construct a measurement equation
which relates the measurement and state vectors:

Z 5 M@Y# 1 y . (2)

The measurement operator M[Y] is an NZ dimensional vector.
Element k of this vector describes the relation between a
particular measurement Zk and the state vector Y(tk) defined
at measurement time tk. In our land surface application the
elements of the measurement operator M[Y] are derived from
a nonlinear radiative transfer model (section 3.1). The NZ

dimensional vector y in (2) accounts for additive measurement
errors and is defined in terms of its first and second moments.
Here we assume that y is zero mean with a specified covariance
matrix Cy.

The data assimilation algorithm produces a state estimate
which balances the effects of uncertain model errors, initial
conditions, and measurement errors. This can be achieved if
the uncertain inputs included in the problem formulation (the
initial states and the model errors) are adjusted to minimize a
weighted least squares (Bayesian) performance function J .

J 5 ~Z 2 M@Y#!TCy
21~Z 2 M@Y#! 1 ~b 2 b# !TCb

21~b 2 b# !

1 E
0

tf E
0

tf

v~t9!TCv
21~t9 , t0!v~t0! dt9 dt0

1 2 E
0

tf

lTS ­Y
­t 2 w~Y! 2 vD dt . (3)

Throughout the text, superscript T denotes the vector or ma-
trix transpose. The performance function minimizes the aggre-
gate error over the assimilation interval. The first term in this
function takes into account the misfit between the data vector
Z and the measurement predictions M[Y], normalized by the
measurement error covariance Cy (which has dimension NZ 3
NZ). The second and third terms penalize normalized devia-
tions of the uncertain inputs from the specified prior mean
values. For convenience we assume that the mean model error
v# is zero. This assumption could be relaxed if available infor-
mation suggested the presence of a systematic bias (non-zero
mean) in the model error. The final term in (3) is obtained by
adjoining the state equation to the performance index with the
time-dependent NY dimensional Lagrange multiplier vector l.
The model constraint ensures that the state estimates pro-
duced by the data assimilation procedure will be dynamically
consistent.

The optimal estimates of the uncertain inputs and states are
obtained by setting the first variation of the adjoined perfor-
mance function (3) equal to zero. This yields a set of so-called
Euler-Lagrange equations, which constitute a two-point
boundary value problem [Reichle et al., 2001].

­Ŷ
­t 5 w~Ŷ! 1 v̂ Ŷ u t50 5 Y0~b̂! , (4)

2
­l

­t 5
­w

­Y U
Ŷ

T

l 1
­M
­Y U

Ŷ

T

@d#Cy
21~Z 2 M@Ŷ#! (5)

l u t5tf 5 0,

v̂ 5E
0

t f

Cv~t, t9!l~t9! dt9 b̂ 5 b# 1 Cb

­Y0

­b
U
b̂

T

lut50. (6)

In these equations, estimates are denoted with a hat and [d] [
diag (d1, d2, z z z , dNZ

) is a diagonal matrix with the kth
diagonal element dk [ d(t 2 tk), where d(t 2 tk) is the
scalar Dirac delta function for time tk. Note that ­w/­Y and
­M/­Y are NY 3 NY and NZ 3 NY matrices, respectively.

The first, or forward, Euler-Lagrange equation (4) expresses
the fact that the estimates obey the state equation (1). The
second, or adjoint, equation describes how measurement in-
formation obtained at a given time propagates backward to
earlier times. Note that this equation is forced by differences
between measurements and the corresponding model predic-
tions. The third, or update, set of equations (6) relates the
estimates of the uncertain inputs to the adjoint variable. This
set of equations indicates that the fundamental unknowns that
must be estimated are the elements of the model error v̂ and
the initial condition parameter vector b̂. Once these unknowns
are estimated, the forward equation may be used to derive the
state estimate Ŷ at any time or location within the assimilation
interval. Note that the adjoint variable l contains all of the
measurement information needed to derive the estimates v̂
and b̂. These estimates and the state estimates that depend on
them can be obtained without explicit computation of the state
estimation error covariance matrix.

The coupled set of nonlinear Euler-Lagrange equations pro-
vided above must be solved with an iterative numerical algo-
rithm. Although a number of possibilities are available, we
have found that the best combination of efficiency and perfor-
mance is provided by the iterated indirect representer algo-
rithm [Bennett et al., 1998; Reichle et al., 2001]. This algorithm
relies on a series expansion of the estimated fields. The basis
functions of the expansion are the linearized prior cross co-
variances between the measurement predictions and the states.
These basis functions are derived from the Euler-Lagrange
equations rather than specified a priori.

Since the iterated indirect representer algorithm propagates
covariance information implicitly (through the Euler-Lagrange
equations) rather than explicitly (with a large covariance ma-
trix) it is very efficient. In particular, this algorithm is able to
provide statistically optimal estimates without the simplifica-
tions that have been used in other large-scale soil moisture
estimation applications.

3. A Land Surface Hydrologic Model
for Data Assimilation

A hydrologic model for land surface data assimilation must
capture key physical processes while remaining efficient
enough to make large-scale optimal estimation computation-
ally feasible. These are potentially conflicting requirements
that need to be traded off when a model is selected. On the
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basis of the variety of models described in the literature, we
have developed a land surface scheme especially designed for
data assimilation purposes. This model is described in detail by
Reichle [2000]. Its most important features are summarized in
the following sections.

3.1. Vertical Moisture and Energy Transport

Our model of coupled moisture and heat transport is a
typical soil-vegetation-atmosphere transfer scheme (SVAT).
Vertical soil moisture transport is governed by a spatially dis-
cretized one-dimensional (vertical) version of Richards’ equa-
tion, with soil hydraulic properties described by relationships
from Clapp and Hornberger [1978]. Figure 1 shows the six
subsurface layers used in the Richards’ equation discretization.
These are located at 0–5 cm, 5–15 cm, 15–30 cm, 30–45 cm,
45–60 cm, and 60–90 cm. The lower boundary condition for
the soil moisture equation is defined by gravity drainage.

In order to achieve maximum computational efficiency we
describe temperature dynamics with a one-layer force-restore
method [Hu and Islam, 1995] rather than the full heat equa-
tion. This approach, which focuses on diurnal fluctuations in
the upper soil layer, is ideal for our remote sensing application.
The deep soil temperature in the force-restore model is spec-
ified as the seasonal average of the observed air temperature.

We describe moisture and heat fluxes through the vegetation
layer with a resistance network approach adapted from the
Simplified Biosphere Model (SSiB) [Xue et al., 1991]. At the
land surface we assume near-neutral atmospheric conditions.
The brightness temperature is related to the land surface states
with a grey body radiative transfer model [Ulaby et al., 1986;
Galantowicz et al., 1999]. Figure 2 shows the bare soil micro-
wave emissivity (which mostly determines the brightness tem-
perature) versus soil moisture. For bare soil, there is a strong
sensitivity of the microwave emissivity to soil moisture. Vege-
tation and soil roughness effects decrease this sensitivity, but
for grasslands and crops L-band brightness data are still infor-
mative about soil moisture [Jackson et al., 1999].

Our land surface model has been successfully tested by com-
paring its predictions with measurements from the BARC data

set [Jackson et al., 1997; Reichle, 2000]. On the basis of these
tests we believe that the model described here is sufficiently
accurate and computationally efficient to form the basis for an
operational soil moisture data assimilation algorithm.

3.2. Horizontal Variability and Downscaling

Although the model used in our data assimilation procedure
provides for spatial variability over all three dimensions, the
fluxes and length scales in the vertical and horizontal dimen-
sions are much different. This feature can be exploited to
improve computational efficiency without any significant sac-
rifice in accuracy. In particular, we assume that lateral (hori-
zontal) moisture and heat fluxes in the unsaturated zone are
negligible. As a result, horizontal structure in our soil moisture
estimates reflects spatial correlation in micrometeorological
inputs, land cover, and soil texture rather than horizontal
transport. This assumption is reasonable for terrain with mod-
erate relief over the spatial scales under consideration here. It
enables us to break the model domain into a grid of one-
dimensional vertical cells or “estimation pixels,” as illustrated
in Figure 1. We seek estimates of the soil moisture in the seven
nodes associated with each pixel and estimates of the canopy
temperature and the soil temperature in the surface layer of
each pixel.

Satellite observations of L-band brightness temperatures
will likely be available only over relatively large spatial scales.
For present purposes we define each pixel resolved in the
brightness image to be an “observation pixel.” Over the United
States the micrometeorological data and other inputs defined
over the estimation pixels of our model grid are typically avail-
able on scales of 1 km or less. By contrast, the observation pixel
scale for a space-borne passive L-band sensor will be of the
order of 50 km in the near future and possibly 10 km in 10
years. Clearly, it would be desirable to derive soil moisture
estimates at the finer scale of the estimation pixels, even when
brightness images are only available at the observation scale.
This process is sometimes called “downscaling” to reflect the
transfer of information from larger to smaller spatial scales.

The problem formulation of section 2 provides a convenient
way to account for scale differences between the estimation
and observation pixels. The kth element of the measurement
operator M[Y] describes the relationship between the bright-
ness measurement Zk in the observation pixel centered on xk

and the states of estimation pixels nested within this observa-
tion pixel. At the frequencies of interest here the brightness
temperature in an observation pixel can be adequately approx-
imated as the arithmetic average of the brightness tempera-
tures in the nested estimation pixels [Drusch et al., 1999; Liou
et al., 1998]. The radiative transfer model specifies how the
estimation pixel brightness temperatures are related to the
land surface states. When these relationships are used to de-
fine M[Y], the data assimilation algorithm can estimate states
at the estimation pixel scale directly from measurements at the
observation pixel scale. This downscaling process is described
for a simple example in Appendix A.

4. Assessing the Performance of the Algorithm
With Synthetic Experiments

In section 5 we investigate a series of important design issues
with data assimilation experiments based on synthetically gen-
erated radio brightness data. Synthetic experiments are ideally
suited for algorithm performance tests since all of the uncer-

Figure 2. Bare soil microwave emissivity versus saturation
[Ulaby et al., 1986].
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tain inputs are known by design. There is no ambiguity about
the “right answer” to be achieved. When dealing with complex
data processing algorithms such as the one described here
synthetic experiments are an indispensable first step toward a
field application. However, it is obvious that such experiments
cannot replace operational tests based on real field observa-
tions. In the near future it should be possible to carry out
operational tests of soil moisture data assimilation algorithms
such as the one described here. One promising option is a test
using passive microwave data from the Electronically Scanned
and Thinned Array Radiometer (ESTAR) deployed during the
SGP97 field campaign [Jackson et al., 1999].

4.1. Experiment Area and Model Inputs

The synthetic test problems considered in this paper are
based on the recent Southern Great Plains (SGP97) hydrology
experiment in central Oklahoma [Jackson et al., 1999]. The 80
km by 160 km area chosen for the synthetic experiment is
shown in Figure 3. We divide this area into 16 by 32 estimation
pixels of 5 km by 5 km. The soil temperature and the soil
moisture profile are estimated in each of these 512 pixels.
Figure 3 also displays land cover data, which were obtained
from the SGP97 Data Archive, and soil texture data, which
were compiled from the ESSC database at Pennsylvania State
University. The micrometeorologic inputs are taken from the
Oklahoma Mesonet database and interpolated to the model
grid with inverse-square-distance weights.

Our synthetic experiment covers a 2-week period from June

18, 1997 (day of year 169), to July 2, 1997 (day of year 183). Soil
moisture estimates are derived at a basic time step of 15 min.
Figure 4 shows a time series of the observed area average
precipitation, with radio brightness measurement times indi-
cated by small open circles. Note that observations are occa-
sionally taken during or shortly after a rain event. While it is
raining, the water film covering the vegetation and the soil
makes it difficult to take accurate measurements of the passive
L-band microwave radiation. We do not have to account for
this effect in our synthetic experiments. In an operational set-
ting, a quality control routine would be needed to screen out
data affected by water films.

4.2. Synthetic Experiments

For each of our synthetic experiments we generate time-
invariant initial condition parameters b and time-dependent
random model error fields v. The corresponding solution to
the forward equation (1) is defined to be the set of “true”
system states. These are computed every 15 min at the 5 km
estimation pixel scale. The “prior” state is the solution of (1)
obtained when the initial conditions and model errors are set
to their prior values b# and v# [ 0, respectively. This prior
solution can be viewed as the “best guess” of the true states
available without the benefit of radio brightness measure-
ments.

The spatial and temporal correlation functions of the uncer-
tain inputs are unknown a priori and very difficult to charac-
terize. Their accurate determination for a given model and

Figure 3. Area for the synthetic experiment. The horizontal grid of 16 by 32 pixels (80 km by 160 km) is
shown together with the locations of the Oklahoma Mesonet stations and the (left) land cover classes and with
(right) the soil texture classes.
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field setting constitutes a research project in its own right and
is well beyond the scope of this paper. Here, we only aim to
prove the concept of soil moisture assimilation and downscal-
ing with the synthetic experiments. This does not critically
depend on the exact shapes and scales of the correlation func-
tions, and we specify conditions that in our experience are
appropriate for the experiment area and our model.

The initial conditions and model errors generated in our
synthetic experiments are normally distributed random fields
with exponential spatial and temporal correlation functions.
To make the estimation more robust, we prescribe the shape of
the soil moisture profile at the initial time, but the total amount
of water that is stored across the column is uncertain. The
shape of the profile can for example be the best estimate at the
final time of a previous assimilation interval, a profile that
results from a spin-up integration, or simply a hydrostatic pro-
file. In our experiments the initial condition of the top node
soil saturation has a mean value of 0.5, an error standard
deviation of 0.07, and a correlation length of 50 km. After the
initial time, changes in the surface fluxes cause the moisture
profile to deviate from its initial shape. The initial upper layer
soil temperature is set equal to the initial air temperature and
is assumed to be known perfectly (the upper layer soil temper-
ature memory is only a few hours and has little impact on
longer-term estimates).

Model errors are represented as unknown fluxes in the near-
surface soil moisture, soil energy, and canopy energy balance
equations. We assume that each of these errors is zero mean
with a standard deviation of 50 W m22. The model error
correlation lengths are all 6 km and their correlation times are
all 10 hours.

The true brightness temperatures are obtained by running
the true states through the radiative transfer model at the

chosen observation pixel scale. The vector Z of synthetic
brightness measurements is obtained by adding random mea-
surement errors. The assimilation algorithm estimates the land
surface states from the noisy data Z and the prior solution. The
algorithm’s performance may be measured in terms of the
difference between the true and estimated states at a given
time and location (the estimation error). In some cases, it is
convenient to consider the root-mean-square (rms) error av-
eraged over all pixels in the study area. The algorithm’s esti-
mation error should be compared to the prior error, which is
the difference between the true and prior states. If the mea-
surements are informative the rms estimation error should be
smaller than the rms prior error.

The synthetic brightness measurements used in our experi-
ments are generated at several different scales, corresponding
to different downscaling scenarios. In each case a daily syn-
thetic brightness value is generated at every observation pixel
in the model domain at 0945 LT. The random measurement
errors added to the brightness temperature values are spatially
and temporally uncorrelated with a standard deviation of 5 K.
This observation time and level of uncertainty are typical of the
SGP97 field experiment. The absence of spatial correlation is
not a constraint imposed by the algorithm but is a simplifica-
tion adopted for convenience.

Figure 4 summarizes the temporal setup of the experiments
considered in this paper. For the “reference experiment” the
observation pixel is the same size as the estimation pixel (5 km
on a side), precipitation measurements are provided to the
assimilation algorithm, and there is only one assimilation in-
terval spanning the entire two week period for which data are
available. Results from the reference experiment are described
in detail by Reichle [2000]. In this paper we focus on modifi-

Figure 4. Areally averaged observed precipitation shown with the temporal setup of the synthetic experi-
ments. For the downscaling experiments (section 5.1) and the precipitation withholding experiment (section
5.2) there is just one assimilation interval which covers the entire 2-week period. In experiment A of section
5.3, there are three assimilation intervals indicated on the horizontal bar labeled A. In experiments B and C,
there are 12 assimilation intervals with observation times at the end and the beginning of the intervals,
respectively. These are indicated on the horizontal bars labeled B and C.
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cations to the reference experiment that illuminate some im-
portant design issues.

5. Results and Discussion
In the following subsections we investigate three design is-

sues which are relevant to the task of estimating soil moisture
from remotely sensed radio brightness measurements. The first
of these concerns the feasibility of downscaling, defined as the
estimation of soil moisture and other land surface states at
spatial scales finer than the scale of radio brightness observa-
tions. The second issue concerns the feasibility of estimating
soil moisture from radio brightness measurements in the ab-
sence of precipitation measurements. The third issue considers
the effect of the assimilation interval length on the accuracy
and computational demands of the assimilation algorithm.

5.1. Downscaling

As outlined in section 3 and Appendix A, we can effectively
increase the resolution of radio brightness images by making
use of the fact that micrometeorological, land cover, and soil
texture information are typically available at finer scales than
the brightness data. The spatial structure conveyed by these
finer-scale model inputs provides the information needed to
resolve soil moisture variations over scales smaller than the
observation pixel scale. We can investigate this process in de-
tail by considering estimates obtained from a series of synthetic
experiments with progressively coarser observation pixels.
Each of these is the same as the reference experiment dis-
cussed in section 4 except that the size of the observation pixel
is changed.

Recall that the estimation pixel used in all of our synthetic

Plate 1. True and prior top node saturations (in the first two columns) at three different times (in the three
rows). Estimated top node saturations for downscaling ratios of (1:4) and (1:16) are also shown (in the third
and fourth columns). The observation pixels used to compute the downscaled estimates are indicated with
solid black grid lines.

2359REICHLE ET AL.: SOIL MOISTURE DATA ASSIMILATION



experiments has a length of 5 km (Figure 1). For our down-
scaling experiments we generate synthetic brightness measure-
ments over observation pixels with lengths of 10 and 20 km,
respectively. In the first case, each observation pixel contains
four estimation pixels, while in the second case each observa-
tion pixel contains 16 estimation pixels. We refer to these two
alternatives as the (1:4) and (1:16) downscaling scenarios, re-
spectively.

In Plate 1 we compare the true and prior top node satura-
tions (shown in the first and second columns, respectively) to
the top node saturation estimates obtained from each of the
downscaling scenarios (shown in the third and fourth col-
umns). Recall that the prior solution corresponds to a simula-
tion without updates from the brightness observations. Each
row in Plate 1 corresponds to a different time. Note that soil
moisture estimates are also obtained at the six nodes below the
surface layer, providing a complete soil moisture profile at
each pixel. The general patterns at depth are similar to those
observed in the surface layer.

Plate 1 demonstrates that the algorithm can adequately es-
timate the large-scale spatial distribution of the saturation in
both of the downscaling scenarios. Structures at scales well
below the scale of the observations can be resolved satisfacto-
rily. This means that radio brightness images with resolutions
of a few tens of kilometers are useful, even if the estimation
scale of interest is of the order of a few kilometers, provided
that fine-scale information is available on the micrometeoro-
logic forcings, land cover, and soil texture.

5.2. Assimilation Without Precipitation Data

Of all model inputs, precipitation is the one which most
dominates soil moisture. At the same time, precipitation is also
the input with the highest uncertainty. Rain gauge observations
(rain depths over specified time intervals) are point measure-

ments, and interpolation to larger areas is difficult and error
prone. Reflectance measurements from radar sensors provide
greater coverage than point rainfall data but they are only
indirectly related to precipitation. Since precipitation measure-
ments are so important in soil moisture assimilation, it is useful
to take a closer look at their role in the assimilation process.

One way to do this is to examine the effect of withholding
precipitation data. We do this by repeating the reference ex-
periment with all precipitation inputs set equal to zero while
assimilating the daily synthetic brightness observations that
have been generated at 0945 LT at each observation pixel. In
this case the effects of precipitation can be accounted for by an
increase in the estimated model error for the soil moisture state.
In order to enable the model error to increase sufficiently during
rain events, we increase the model error standard deviation for
the soil moisture flux to 2.7 mm h21 at all pixels when precipita-
tion occurs somewhere in the domain. That is, we tell the algo-
rithm when it might be raining (a binary indicator), but we do not
specify the amount or location of rain falling.

Figure 5 shows the root-mean-square (rms) top node satu-
ration error when quantitative precipitation data are withheld
from the assimilation algorithm. For comparison, we also show
the rms estimation error for the reference experiment, which
includes precipitation data. Figure 5 indicates that even when
all quantitative precipitation information is withheld and only
the approximate timing of the storms is supplied, we can esti-
mate the top node saturation to within 3.4% in saturation
terms, compared to 1.4% under the ideal conditions of the
reference setup and 19% for the prior solution.

Note that the rms prior error increases steadily over the
2-week assimilation interval when precipitation measurements
are withheld. This is not surprising since, in the absence of
rainfall inputs, the prior solution is governed by a single,
2-week long drydown. For longer assimilation intervals the

Plate 2. Areally averaged root-mean-square (rms) errors for multiple assimilation intervals. The rms errors
in the estimated top node saturation are shown for the single interval reference experiment, one experiment
(A) with three assimilation intervals, one experiment (B) with twelve assimilation intervals with measurements
located near the end of each interval, and one experiment (C) with twelve assimilation intervals with
measurements located near the beginning of each interval. Discontinuities in estimates occur at interval
boundaries because the initial condition estimated from radio brightness measurements in interval n is
generally different than the final value estimated from measurements in interval n 2 1. Sharp decreases in
rms error occur when measurements follow soon after precipitation events (Figure 4). The legend provides the
temporal mean of the rms errors.
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prior saturation error reaches a plateau since the saturation
error is bounded.

Also note that the rms error in the top node saturation
increases around precipitation events, reflecting the fact that
the detailed temporal structure of these events cannot be re-
solved from brightness data that are available only once daily.
To illustrate this point, we plot in Figure 6 the observed pre-
cipitation and the corresponding model error estimates for a
typical pixel during a precipitation event. In this case the model
error estimate is effectively an estimate of precipitation.

Although daily radio brightness measurements contain some
information about relative storm volume, it is clear that they
do not tell us much about the detailed temporal structure of
individual storms. The model error estimates are smoother and
generally lower in magnitude than the observed precipitation.

This reflects the fact that each brightness observation only
provides information on the cumulative effect of precipitation
that occurred since the last measurement. The shape of the
estimated precipitation events (i.e., estimated soil moisture
model errors) shown in Figure 6 reflects the temporal corre-
lation structure imposed by the model error statistics rather
than information contained in the brightness measurements.
This implies that fine-scale (temporal) rainfall intensity is un-
identifiable from brightness measurements. Nevertheless, the
soil moisture, which is the quantity of primary interest, can be
accurately estimated from brightness data alone.

5.3. Multiple Assimilation Intervals

Perhaps the greatest advantage of variational data assimila-
tion methods over Kalman filters is their ability to derive op-

Figure 5. Areally averaged root-mean-square (rms) errors when precipitation is withheld. The solid line
shows the rms errors from the reference experiment in which the precipitation data are provided to the
assimilation algorithm. The dashed line shows the rms errors when the precipitation data are withheld. The
dotted line shows the rms errors for the corresponding prior solution. The legend provides the temporal mean
of the rms errors.

Figure 6. Model error estimates when precipitation data are withheld, plotted for a typical estimation pixel
during the last major precipitation event.
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timal estimates without explicitly computing an estimation er-
ror covariance matrix. However, in an operational setup, this
can also be a disadvantage. If we want to use the variational
method with a continual stream of new data, we have to block
the data into a series of consecutive assimilation intervals In [
[tn21, tn] of finite length. To initialize the assimilation interval
In, we must supply the prior (or first guess) mean value and
covariance of the initial condition such that information gained
in the past is reflected. The mean of the initial condition for In

is readily set equal to the estimate at the end of the preced-
ing interval In21. Likewise, its covariance should equal the
corresponding estimation error covariance at the end of the
preceding interval In21. However, this covariance is too
expensive to compute in practice which forces us to adopt
approximations.

In this section we study the impact of such approximations in
a series of three synthetic experiments which focus on the
issues of assimilation interval length and initialization. These
experiments have the same specifications as the reference ex-
periment except that the 2-week study period is divided into
multiple assimilation intervals. One option to initialize interval
In is to use the initial condition covariance that we specified in
the single interval reference experiment. However, this single
interval covariance will generally be unrealistically large when
used to initialize In since it does not account for all the infor-
mation obtained from data collected through In21. It is better
to make the initial condition covariance of In a scaled fraction
of the single interval covariance. In our synthetic experiments
the covariance scaling factor used for a given interval depends
on the interval’s sequential order and duration. Covariances
for earlier intervals are higher because they rely on smaller
amounts of historical data. This scaling does not change the
associated correlation lengths.

In particular, in our first experiment (A) the 2-week study
period is divided into three assimilation intervals containing 5,
3, and 4 radio brightness observation times, respectively (Fig-
ure 4). These intervals correspond roughly to interstorm peri-
ods. The corresponding initial condition covariances are 0.63,
0.19, and 0.17 of the single interval value. In our second and
third experiments (B and C, respectively) we divide the study
period into 12 short assimilation intervals, each containing only
a single radio brightness measurement (Figure 4). In Experi-
ment B the observation times are at the end of each interval,
while in Experiment C they are at the beginning of each inter-
val. In experiments B and C the initial condition covariance is
set equal to 0.5n21, where n 5 1, z z z , 12 indicates the
sequential order of the interval.

Plate 2 shows the rms errors of the estimated top node
saturation for the three assimilation interval experiments, to-
gether with the rms error obtained from the reference exper-
iment. For Experiment A the time-averaged top node satura-
tion rms error is 3%, and for Experiments B and C the
corresponding time-averaged rms errors are 3.2 and 3.8%,
respectively. These numbers compare to a time-averaged rms
error of 2.9% in the reference experiment. As might be ex-
pected, the rms error increases as the number of assimilation
intervals increases. With each additional assimilation interval
we introduce more approximations by decoupling the data
subsets associated with separate intervals and by naively reini-
tializing the initial condition covariance. This reduces the al-
gorithm’s ability to optimally combine the information con-
tained in different intervals.

Perhaps the most interesting aspect of our assimilation in-
terval study is the difference in Experiments B and C. In
Experiment B, errors in specifying the initial condition covari-
ance are introduced nearly 24 hours before the observation
time. During the intervening period, time-dependent microme-
teorological forcings gradually overwhelm the influence of the
erroneous initial condition covariance. As a result, the com-
parison between predicted and measured radio brightness val-
ues, which occurs at the observation time, is relatively unaf-
fected by errors in the initial condition covariance. By contrast,
in Experiment C, poorly specified initial condition covariances
have a greater influence on the update, which occurs only a few
hours into the assimilation interval. Note that Experiment C
corresponds closely to a Statistical Interpolation scheme,
which updates estimates with measurements at the same time
as the approximate covariance is specified independent of the
dynamics of the system [Daley, 1991].

Overall, the estimates for the reference experiment and for
Experiments A and B are very similar. This suggests that the
suboptimality introduced by the naive reinitialization is not
severe, provided the assimilation interval configuration allows
errors in the initial condition covariance to evolve for at least
one day. Given this, it is important to note that the algorithm’s
computational requirements decrease substantially if we use
multiple but shorter assimilation intervals. For the case con-
sidered here division of the study period into three assimilation
intervals decreases the computer time by nearly two thirds. The
savings are even more dramatic if we use 12 assimilation in-
tervals. This decrease in computer time reflects the fact that
initial condition updates are less computationally demanding
than model error updates.

Although the multiple interval covariance reinitialization
technique used here is naive and the estimation process is
not strictly optimal, the estimates are quite close to the
optimal estimates of the reference experiment. For a small
sacrifice in optimality, the savings in computational effort
are sufficient to make assimilation intervals of a few days an
attractive option.

6. Summary and Conclusions
In this work we have developed and investigated an optimal

four-dimensional data assimilation algorithm for hydrologic
applications. This algorithm is based on a land surface model
that describes changes in soil moisture, soil temperature, and
canopy temperature over time and three spatial dimensions.
The land model captures key physical processes at the land-
atmosphere boundary while meeting the stringent computa-
tional requirements of a practical data assimilation system.
Computational efficiency has been achieved by dividing the
model domain into laterally uncoupled one-dimensional verti-
cal columns. These columns are related through horizontal
correlations in the various inputs which force the model. The
use of a column-oriented model also makes it possible to
estimate profiles of soil moisture and related variables.

Estimates of the land surface states are derived directly from
L-band passive microwave measurements, which are related to
the states by a radiative transfer model. Other types of re-
motely sensed observations could be included with suitable
modifications. The estimation process is formulated as a vari-
ational optimization problem which accounts for both model
and measurement errors. The solution is obtained with the
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iterated indirect representer algorithm technique, which is ap-
plied here for the first time to a hydrologic problem.

We have used our data assimilation algorithm to investigate
several design issues which are important in practical applica-
tions. These issues deal with downscaling of radio brightness
observations, the role of precipitation measurements in soil
moisture estimation, and the configuration of assimilation in-
tervals. Our synthetic downscaling experiments show that it is
feasible to estimate land surface variables such as soil moisture
at horizontal resolutions smaller than the resolution of avail-
able radio brightness observations. The additional information
gained in this case comes from micrometeorological, land
cover, and soil texture data provided at smaller spatial scales.
Even for downscaling ratios of one to sixteen (each observation
pixel contains sixteen estimation pixels), it is possible to cap-
ture many of the fine-scale features of the true fields. This
implies that brightness images with a resolution of 40–50 km
may be sufficient to support soil moisture estimates on a scale
of 10 km, provided that sufficiently accurate model inputs are
available at the finer scale.

In other synthetic experiments we have demonstrated the
ability of the assimilation algorithm to satisfactorily estimate
soil moisture even if quantitative precipitation data are not
available. This is possible because radio brightness data are
sensitive to precipitation-induced changes in soil moisture. Al-
though soil moisture estimates improve if both radio brightness
and precipitation data are available, it may be sufficient in
practice to provide the assimilation algorithm with information
on the timing of rainfall events.

In our final set of synthetic experiments we have assessed the
influence of the length of the assimilation interval, and we have
considered the operational problem of specifying an approxi-
mate initial condition covariance at the beginning of each
interval. Our investigation of this issue indicates that it is best
to match the assimilation interval approximately to an inter-
storm period. Moreover, each interval should be chosen to
ensure that there is sufficient time for errors in the approxi-
mate initial condition covariance to dampen out before the
next measurement is processed. If we observe these guidelines
we can obtain nearly optimal estimates, even though compu-
tational limitations force us to naively reinitialize the assimi-
lation intervals.

The next step in the development of our data assimilation
approach is to conduct a field test, using ESTAR radio bright-
ness observations collected during the SGP97 experiment
[Jackson et al., 1999]. This will force us to reexamine issues
relating to model error, both forcing errors and more pervasive
errors in model structure. In future applications computation
of selected estimation error variances should be included. This
is within the capabilities of the variational approach, although
it is a computationally demanding task. Estimation error vari-
ances will provide valuable insights about the accuracy of the
estimates and can provide a basis for tests of hypotheses about
error statistics and other algorithm inputs [Reichle et al., 2001].
Data compression may help to lower the cost of computing
estimation error variances, especially if the size of the estima-
tion problem can be substantially reduced in this way.

In practice, the feasibility of retrieving subsurface moisture
profiles from surface measurements depends on the accuracy
and the physical realism of the land model and the associated
error statistics. Since large-scale soil moisture profiles cannot
be directly observed they can only be estimated by using the
hydrologic model to propagate information downward from

the surface. However, the time required for reliably estimating
profiles in this way is significantly longer than the 2-week
period considered here. One approach to decrease the re-
quired time could be to use physically consistent similarity
profiles and estimate the scale parameters. Other problems
with profile estimation are the scarcity of verification data and
the fact that the connection between profile measurements at
point locations and large-scale estimates from data assimila-
tion remains unclear. Note, however, that large-scale profile
estimates can be useful independent of their relationship to in
situ measurements by providing physically consistent large-
scale surface flux estimates which can be verified more easily.
These issues clearly deserve more attention in future research.

It is likely that land surface estimates produced by our as-
similation algorithm could be improved by adding other types
of measurements, such as infrared observations of soil tempera-
ture and low-frequency microwave measurements (for example,
C-band, 5.3 GHz). Multi-platform and multifrequency measure-
ments can be naturally included in the assimilation algorithm if
the measurement equation is modified accordingly.

The algorithm in its current implementation is not yet suf-
ficiently robust for widespread practical applications. Conver-
gence is difficult to achieve for large uncertainties in the initial
condition and long assimilation intervals. It is not yet clear
whether the difficulties arise because of the nature of land
processes or because of possible deficiencies in our implemen-
tation, particularly of the model adjoint. More research is
necessary to trace the source of these problems. Nevertheless,
our results on downscaling and the role of precipitation for soil
moisture estimation are valid independent of the choice of
assimilation algorithm.

Finally, it should be noted that further improvements in
computational efficiency may be required before continental-
scale applications of hydrologic data assimilation become fea-
sible. Given the highly nonlinear structure of land-
atmosphere processes and the high complexity of real world
applications, any large-scale land assimilation algorithm will
inevitably be a compromise between realistic physical rep-
resentations and computational feasibility. We believe that
the approach outlined here strikes a reasonable balance on
this continuum.

Appendix A: Downscaling Example
Both the state vector Y(t) and its adjoint l(t) are defined on

the scale of the estimation pixels and are related through the
Euler-Lagrange equations. Consequently, we can illustrate
how downscaling works by considering how the estimation-
scale adjoint variable can be derived from observation-scale
brightness data. Suppose the domain consists of four estima-
tion pixels and the state vector is only given by the soil satu-
ration, that is Y 5 [S1 z z z S4]T. Let us further assume that
there is only one scalar brightness measurement Z 5 TB

obs at
time t1 which covers all four estimation pixels (Figure 1) and
which has a measurement error variance sy

2.
By using the radiative transfer model of section 3, we can

derive model predictions of the brightness temperature
TBi(Si) on the scale of the estimation pixels. In order to
compute the data misfit term Z 2 M[Y], we need model
predictions of brightness temperature on the coarser observa-
tion scale. This is easily achieved by averaging the fine-scale
brightness predictions over the observation pixel. For L-band
observations the arithmetic average is appropriate [Drusch et
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al., 1999; Liou et al., 1998]. In our example the measurement
operator is therefore M[Y] 5 1

4
¥ j51

4 TBj. Using the above in
(5) yields for the ith estimation pixel (i 5 1, z z z , 4)

2
­l i

­t 5 O
j51

4
­w j

­Yi
U

Ŷ

l j 1
1
4

­TBi

­Si
U

Ŷ

z d~t 2 t1!sy
22S TB

obs 2
1
4 O

j51

4

TBjD . (7)

Equation (7) shows how the algorithm distributes the informa-
tion from the coarse-scale brightness observation to the finer
scale of the adjoint (or equivalently the state). The observa-
tion-scale data misfit term TB

obs 2 1
4
¥ j51

4 TBj is weighted
differently for each of the four estimation pixels. The respec-
tive weights depend on estimation pixel-scale micrometeoro-
logical, soil, and land cover data that affect the partial deriv-
atives ­w j/­Yi and ­TBi/­Si. See Figure 2 for an example of
how different soil textures affect the microwave emissivity and
ultimately the brightness temperature.

The brightness measurement TB
obs enters (7) only at the

observation scale. No off-line disaggregation is necessary. On
the contrary, the fine-scale model predictions of brightness are
aggregated to the observation scale in order to calculate the
data misfit term. An estimate of the downscaled model error is
obtained by substituting the downscaled adjoint variable into
(6). The downscaled state estimate is then obtained by substi-
tuting the downscaled model error into (4).
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